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Employing matched asymptotics, we extend the recent theory of Mei (1986) to study 
the phenomenon of upstream influence by a slender ship moving near the critical 
speed. For a special class of channel width and ship slenderness, it is shown that 
the response on the sea surface is essentially one-dimensional with the wave crests 
perpendicular to the ship’s axis. In particular, solitons are radiated upstream. The 
hydrodynamic pressure on the ship, as well as the total sinkage force, wave resistance 
and trimming moment are calculated. These forces are functions of time despite the 
constant speed of the ship. The sinkage and trim for a ship model fixed on an 
advancing carriage are computed and show rapid variations across the critical speed 
as in the reported experiments of Graff, Kracht & Weinblum (1964). Because of 
the assumed slenderness of the ship, this theory does not predict two-dimensional 
waves in the wake. Nevertheless, there is crude agreement in the time-averaged 
hydrodynamic forces between theory and experiment. 

1. Introduction 
It has been observed in several studies (Thews & Landweber 1935, 1936; Graff, 

Kracht & Weinblum 1964; Izubuchi & Nagasawa 1937; Kinoshita 1946; Huang, 
Sibul & Wehausen 1983; Ertekin, Webster & Wehausen 1984) that steady states 
cannot be attained in a long tank if a ship model is towed at  a constant speed U near 
the natural speed of a long wave, (gh)i, where h is the still-water depth. Before 
systematic experiments were available, there had been theories based on the 
presumption of a steady state. Extending Michell(l898) and Joukowski (1903), Tuck 
( 1966) gave a linearized theory which yields reasonable hydrodynamic forces when 
the two speeds U and (gh)a are substantially different, but unbounded forces when 
they are close. Nonlinear theories resembling transonic aerodynamics have also been 
proposed by Maruo (1948), Lea & Feldman (1972) and by Maruo & Tachibana (1981). 
Their predicted steady responses, although finite, have not been confirmed by 
experiments. Recent interests in transcritical flows, i.e. U/(gh)t  x 1 in a shallow 
channel have been revived by two independent investigations. For a three- 
dimensional ship advancing in a channel of finite width, Huang et al. (1983) have 
found experimentally that solitons are periodically emitted upstream. On the other 
hand, Wu & Wu (1982) have made calculations by using the one-dimensional 
Boussinesq equations which account for both nonlinearity and dispersion to leading- 
order, and found upstream solitons for a disturbance spanning uniformly across the 
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channel. Both these studies point to  the importance of nonlinearity and dispersion. 
Akylas (1984) also considered a moving two-dimensional pressure travelling on the 
free surface but focused attention to the immediate neighbourhood of the critical 
speed. He showed that the physics can be simply described by an inhomogeneous 
Korteweg-de Vries (KdV) equation. 

One of the interesting aspects observed in the experiments is that  three-dimensional 
disturbance, such as a ship, can generate a two-dimensional flow upstream. The 
following physical reason for waves to be one-dimensional has been given by Katis & 
Akylas (1986, private communication). Among all waves radiated from a ship moving 
at speed U ,  those which remain stationary with the ship must be in the direction 
a and have the dimensionless wavenumber k such that Fkh cosa = (kh tanh kh)f .  
Near the critical speed the waves must be long, i.e. kh 4 1 and F = 1 +O(kh)2.  
It follows that cos a = 1 + O(kh)2 which means that the stationary waves must 
be in nearly the same direction as the ship speed. It is also intuitively obvious 
that for these waves to be truly long-crested the channel width must be finite; this 
was demonstrated experimentally to some extent by Ertekin (1984) and Ertekin 
et al. (1984), who conducted tests in a towing tank whose width was comparable to 
the ship length. They have shown that the blockage coefficient, which is essentially 
the area ratio of the ship cross-section to the channel cross-section, is an important 
parameter. On the theoretical side, Mei (1986) has shown for a vertical strut that the 
induced transient flow can be two-dimensional everywhere even if the channel is quite 
wide, as long as the strut is sufficiently slender and its speed is very close to the 
critical speed (gh)f .  The approximate governing equation is again found to  be an 
inhomogeneous KdV equation. Since the ranges of parameters are quite different, this 
theory does not predict the three-dimensional wake observed by Ertekin et al., 
although there is substantial and surprising agreement on the upstream solitons. 
Recently, Ertekin, Webster & Wehausen (1986) have carried out two-dimensional 
computations for a rectangular patch of surface pressure whose width is of the same 
order as the channel width. Their calculations have yielded two-dimensional flow 
upstream and three-dimensional flow downstream, in qualitative agreement with the 
measurements. It is as yet unclear how their two-dimensional computation, which 
is by no means easy, can be modified to account for the three-dimensional neigh- 
bourhood of a ship. 

I n  this paper we shall extend the theory of Mei to treat the problem of a ship with 
a view to calculating the transient forces on the ship. The results are compared with 
the time-averaged sinkage and trim for a destroyer model measured by Graff et al. 
( 1964). 

We first summarize the exact basic equations. As is shown in figure 1, the channel 
width is denoted by 2 W ,  the ship length by 2L, the characteristic radius of the ship’s 
cross-section by R,. We choose a rectangular coordinate system fixed on the 
waterplane of the ship, so that the x*-axis coincides with the longitudinal axis of the 
ship and the centreline of the channel. Symmetry with respect to  the (z*, z*)-plane 
is assumed. The potential $* of the disturbed flow due to  the ship must satisfy the 
Laplace equation in the fluid, 

#,**,* + $;*y* + $,*.,* = 0 ( - h < Z* < c*) ,  (1.1) 

and the kinematic and dynamic conditions on the free surface a t  z* = (*: 

$,** = f;:* + ( U +  $,**I t:* + $;* g*, 
g[*+$f*+ U$,**++[($,**)2+ ($;*)2+($:*)2] = 0. 

(1.2) 

(1.3) 
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FIQURE 1. Definition sketch of a slender ship moving in a canal. 

The normal velocity must vanish on the channel bottom, 

$,*. = 0, Z* = - h, 

on the channel bank 

$,*. = 0, y* = w, 
and on the ship hull r* = R*(x*, e), 

where r* and 8 are polar coordinates in the (y*, %*)-plane. Before the initial instant 
t* = 0, there is no disturbance 

[* = 0,  $* = 0, t* = 0. (1.7) 

2. Some results for a vertical strut 
To motivate our analysis some key results of Mei (1986) for a strut with vertical 

walls are needed. Let the hull of the strut be given by y* = Y*(x*) on which the 
following boundary condition applies, 

$;* = (U+$j*) Yj* (y* = Y*(z*)). (2.1) 

Two small parameters are introduced which are the measures of nonlinearity and 
dispersion respectively, 

where A is the typical wave amplitude. Upon introducing the normalization 

I Y* = BY, 
L z* = hz, t* =- 

(gh): t 7  

(2.3) 

3-2 
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and the following shallow-water expansion, 
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2~ 2 ( z + ~ ) ~ A $ ~ + ~ ( z + ~ ) ~ A A $ ~ + . . . ,  P4 

we obtain a Boussinesq approximation 

for the depth-average potential 

The hull condition becomes, to the leading order 

where 

- 1B B 
# , ~ - - P Y ,  ony=-Y,  

EL L 

and D = -+F- 
U a a  

(gh): ' at ax F=- 

(2.4) 

Equation (2.5) holds for e = O(p2) and includes nonlinear and dispersive effects to 
leading order only. From here on we shall focus our attention on a small neighbour- 
hood of the critical speed, 

where a = O(1).  We need to rescale time by 

1 -P = 2ap2, 

t = p2r ,  

in order to account for transient effects. Let the channel width be such that 

W 
L 
- = O(/,-rn),  

and rescale the lateral coordinate by 

Y = -  ' where qo = O(1). 
30 Prn 

It then follows from (2.5) and (2.7) that 

and Y, on y = 0. 
- BW 1 B  

7 h2 epmqo L 
$ = - y  =-- 

Several situations may arise. If we choose m = 1 so that 

W 3 
- = O(p-l ) ,  
L TOP 

y = -, 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

then (2.13) is the so called Kadomtsev-Petviashvilli (K-P) equation. A compatible 
boundary condition on the hull is obtained by letting 

BW B 
= 0 ( 1 ) ,  i.e. - L = O(E,LL) = 0 ( , ~ 3 ) ,  (2.16) 
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so that = by,, (2.17) 

where b = O(1).  There is no loss of generality by taking E = p 2  from here on. This 
problem governed by (2.13) and (2.17) requires computations involving two space 
coordinates. On the other hand, Mei (1986) chooses instead 

m = 1  2 (2.18) 

- 

so that 

Equations (2.13) and (2.14) can be satisfied only if 

B p = = 0(1), i.e. - = o ( p 3 . 5 ) .  
P L 

(2.19a, b )  

(2.20) 

Note that B/  W is the blockage coefficient. Then to leading order O(l ) ,  the free-surface 
displacement 

can be shown to satisfy the inhomogeneous KdV equation 

E = -&+O(p) ,  (2.21) 

(2.22) 

The mathematical problem depends only on one space coordinate. Numerical results 
of Mei show that the upstream solitons are in surprising agreement with the 
experiments of Ertekin et al. (1984) which fall in the range W / L  = O(1) and 
B / L  = O(p2) ,  although the observed free surface is highly two-dimensional in the 
wake. 

particular for m = 0 we must choose 
It may be readily shown that the same result (2.22) holds for 0 < m < f. In  

(2.23) 

in order that (2.13) and (2.14) are consistent at the first two orders. This means that 

(2.24a, b)  

i.e. the strut is very slender. 
To treat the case studied experimentally by Ertekin et al. (1984) it  is necessary to 

abolish the Boussinesq approximation (2 5 )  and allow nonlinearity to be much larger 
than dispersion (e.g. E = O(p)) .  This would require a greater computational effort 
involving two-space dimensions as in Ertekin et al., but is not pursued here. 

3. Plan for asymptotic analysis for a slender ship 
We shall only treat cases where the far-field of the ship is one-dimensional to leading 

order. For this, the ship must have a blockage coefficient of the magnitude of O(p4) 
(cf. (2.24b)). The channel width can be within the range O(1) < W / L  < O(p-4). For 
the sake of simplicity only the case W / L  = 0 ( 1 )  is explicitly treated in this paper. 
Thus we assume the characteristic cross-sectional area Rt to be of the order of 

(3.1) Rt = O(Bh) = O b 4  Wh) = O(p5L2). 
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FIQURE 2. Definition sketch of different flow regions. 

R, will be referred to as the effective half-beam of the ship. The slenderness ratio must 
then be 

which implies that the beam-to-depth ratio 

(3.3) 

is also small. Because of these different length ratios, i t  is advantageous to separate 
the channel cross-section into three regions : 

(i)  the far field: 1x1 < co, y = O( W )  = O(L) ,  z = O(h) = O h L ) ,  
(ii) the intermediate field: 1x1 = O(L) ,  (IyI, lz l )  = O(h) = O(,uL), 

(iii) the near field: 1x1 = O(L),  (Iyl, 121) = O(R,) = O(6L) = O(,U~.~L) ,  
as sketched in figure 2. Heuristically the near field is not directly affected by either 
the bottom or the channel banks. In the intermediate field, the channel bottom is 
directly felt but the detailed geometry of the ship or the banks is unimportant. The 
ship must appear merely as a line distribution of two-dimensional sources emitting 
fluid laterally. In the far field, the banks and the bottom directly affect the formation 
of waves which are forced by the fluid flux passing through the intermediate region 
from the ship axis. It may be noted that in the asymptotic theory of Tuck (1966), 
which the present work partially resembles, there is no intermediate region; the near 
and far fields can be matched directly. 

We now carry out the details of these fields which will be matched in order to obtain 
the final governing equations. 

4. The far field 
Instead of applying the analysis of Mei (1986), i t  is more convenient for matching 

purposes to carry out the formalism of the far-field analysis as in Tuck (1966). First 
we adopt the normalization as in Mei. 

x* = Lx, y* = wy, 
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for the independent variables, and 

L2 E* = Lp36, I$* = c p 3 9 ,  

for the dependent variables. Consistent with (2.24) we let 
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(4.2) 

q;1= - W = O(1). 
L 

In terms of these the Laplace equation reads: 

p2(9zz+~;9,,)+92z = 0 (-1 < 2 <P“) .  

The boundary conditions on the free surface become 

92 = P2[(  1 - 2 v 2 )  Ez +p2( 1 - 2cV2)i Et +p2(92 E.2 + 7; 9, E,)I 
( 1 - 2 a p z ) ( ~ + ~ 2 ) + ( 1 - 2 2 a ~ ~ ) t p 2 ~ t + + ~ 2 ( ~ ~ + ~ ~ ~ ~ ) + ~ ~ ]  = 0 ( z  = p2f). (4.5) 

On the channel bottom and banks we have 

(b2=0 (z=-l), 

and & = O  ( y =  1). 

Substituting the expansions 

$75 = #(O) + / P p  + . . . , 
E = g o )  + p 2 p  + . . * , 

we obtain from (4.4) 

1 q5g) = 0, 

&) = -($ 2 + d 9g) * 
(4.10) 

Terms of order p = p@l) and &(’) satisfy the same conditions as #O) and [(O) and are 
therefore omitted. From (4.6) and (4.7) we have 

= #) = 0 ( z  = -I), (4.11) 

$q’ = r p )  Y = 0 (y = 1). (4.12) 

After Taylor expansion, the kinematic free-surface condition gives 

Similarly, the dynamic free-surface condition gives 

Making use of (4.11) and (4.13), (4.10) can be integrated vertically to give 

qP) = p ’ ( 2 ,  y, t ) ,  p) = p ( 2 ,  y, t ) ,  

p = p ( 2 ,  y, t )  -+(z + 1 )2 (@gL + q; $ti). 

(4.13) 

(4.14) 

(4.15) 
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Substituting (4.15) into (4.13) order by order, we obtain 
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I t p  = -(1c.?L+Tx1c.:h), 
tp = - (?g + 7; 1c.f;) + +$fix. - p’($hg + 7; @g) + 2aEp -[lo’ - 1c.x ( 0 )  Ez ( 0 ) .  

(4.16) 

Similar manipulations of the dynamic condition yields 

‘ 5 2 )  = - 1c.x ( 2 )  + 1 2 ( 1 c . L  + T O  2 1c.xyy) (0 )  -f(1c.!” + T i  1c.y) - 1c.P. I (4.17) 

We now substitute (4.17) into (4.16) order by order. Non-trivial information begins 

( ( 0 )  = - + ( O )  
X ’  

at 0(p2) ; 

\ $qJ = 0, 

++ELxx - 1c.g) $gi - +2) = - 7; Il.Fd + i$pJzx - - f (O)$gJ + 2at(o) - f;p) - $(o) t ( o i .  
x x  

(4.18) 

With the help of (4.14), the last equation above can be written as: 

- -a - f (o)p)  2 X -1p 6 zxz = +; p) YY (x, y, t ) .  (4.19) 

Since the boundary condition on the channel bank implies 

1c.t) = Y = p Y = 0 (y = I), (4.20) 

and yW must be independent of y. Integrating (4.19) from y = 0 to 1 then gives 

- f ~ ~ ~ t c - f ~ ~ ~ ~ ~ ~ o ~ ~ ~ o ~ ~ l - f ~ ~ ~  X 6 z z X  = 17/-2$(2)(x,0,J)* S O Y  (4.21) 

Equation (4.21) is an inhomogeneous KdV equation similar to  that of Mei for a strut. 
The right-hand side clearly represents a transverse flux and will be determined by 
matching with the intermediate field. For this purpose we need the following inner 
expansion of $ for small y :  

4 = p y x ,  t ) + / c 2 [ 1 c . ( 2 ) ( X , ~ , t ) - ~ ( z +  i)21c.~~(~,t)+y1c.j/2)(~,o1t)l+0(lU3).  (4.22) 

5. The near field 
Let us introduce the normalized near-field variables 

y* = Roy,  z* = RoZ, r* = ROT, R* = ROB, (5.1) 

but retain the rest of the normalization defined in (4.1) and (4.2). The Laplace 
equation now gives 

(5.2) s 2 $ x x + $ v g + q 5 f f  = 0 ( -03  < 2 < --f s . 
p3 1 

On the free surface a t  f = (p3/S)-f, we have 

$f = p3q1-2ap2)fgt+pq1 - 2 ~ ~ ~ ) ~ x + ~ 3 s ~ x - f x + ~ ) ~ v - f y .  (5.3) 

On the ship hull r = B(x ,  O ) ,  condition (1.6) may be written 
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In  addition we impose $ p O  asi+-co.  (5 .5)  

3 

(5.6) = o(p5), (')' = 0 ( ~ 3 ) .  s Note from (3.2) that> 

We therefore try the following expansions : 

From (5.2), (5.4) and (5.5) the following perturbation equations are easily obtained: 

$g +$g) = 0 (n = 0 ,2 ,3 ) ,  (5 .8)  

- 
$?'.lo ZJ-co ( n = 0 , 2 , 3 ) .  (5.10) 

On the free surface the kinematic condition (5.3) can be approximated to  leading 

(5.11) order by : 

Clearly $(O) can only depend on x and t .  This fact can be utilized to  simplify the Taylor 
expansion of (5.3) to higher orders, with the following results valid on the free surface 

$?) = 0 (n = 2 ,3 ) .  (5.12) 

- 

$p = 0 (Z = 0). 

- 

The homogeneous Neuman problems imply that 
- 
$(n) = f'"'(z, t )  (n = 0,2) .  (5.13) 

The inhomogeneous Neuman problem for 6(3) has the following general solution 
- 
$(3) = f'"(x,t)+3p(X,Y,Z,t), (5.14) 

where $p is the particular solution the details of which depend on the ship geometry, 
and will contribute t o  the pressure distribution at Oh2).  I ts  outer approximation 
for large r will prove to be more important and may be written: 

- 1  
$p = -q(x, t )  lnF+c(x, t ) ,  (5.15) 

n 

where c may be regarded as a part off (3). I n  physical variables we must have : 

(5.16) 

where S* is the cross-sectional area, and S,* its maximum, of the ship below the water 
plane. Defining the blockage coefficient by 

% s -- 
13 - 2Wh' 

(5.17) 
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and using (4.3), we get 
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2 P  q = --,S,S,, 
7 0  8 

and 

(5.18) 

(5.19) 

In order to match with the intermediate field, we need the outer expansion of the 
near field for large 7: 

(5.20) 

6. The intermediate field 

coordinates d and r": 

and keep all other normalized variables defined in (4.1) and (4.2). The dimensionless 
equations are 

Here the proper scale for y and r is h, hence we introduce the intermediate 

y* = hg, r* = hr", (6.1) 

r U 2 4 2 S + 4 ~ j + 4 2 2  = 0 ( - 1  < z < P"), (6.2) 

42 = c ~ ~ ( 1 - ~ ~ p ~ ~ ~ & + ~ ~ ( 1 - ~ 2 t ( l u ~ ) ~ ~ + + ~ 4 ~ ~ ~ + + ~ 4 ~ ~ ~  (2 = p 2 0 ,  (6.3) 

(1 -Zap2) ( ~ + ~ , ) + p 2 ( l - 2 ~ p e ) ~ ~ t + ~ ( p 2 ~ : + ~ ~ + ~ ~ )  = 0 (z = p2[),  (6.4) 

$ , = O  ( z = - l ) .  (6.5) 

In anticipation of matching with the near field, we introduce expansions in the form 
of (5.7), with $(n) and E(n) replaced by 4(n) and Fn), respectively, it then follows from 

(6.6) 

(6.7) 

(6.2) and (6.5) that 

I 4;; + 4g) = 0, 
4;; + $@) = - 4 ( 0 '  

X X '  

and 4?)=0 ( n = 0 , 2 , 3 ;  z = - - 1 ) .  

From the Taylor expansions of the two conditions on the free surface, we get 

(6.10) 

The particular solution 4p corresponds to the response to a line source a t  the origin, 
hence has the following behaviour 

(6.11) 
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near the origin. The inner expansion of the intermediate field is 

(6.12) 

In order to match this with the outer expansion of the near field given by (5.20), we 
must have 

(6.13) 

To seek the outer expansion of the intermediate field, we invoke mass conservation. 
Then the approximation of JP for large g must be 

+ p + M  M9 I ) ,  (6.14) 

so that the outer expansion of the intermediate field is, in terms of the far-field 

where use has been made of (4.3). Now we match (6.15) with (4.22), taking (5.6) into 
account, then 

I @O) = p, 

I 1 6 2  1s 

270 Y To Y 
$k”’(x, 0, t )  = - T q ( x ,  t )  = 7 +S,(X, t ) .  

(6.16) 

Combining (6.16) with (4.21) we finally obtain the governing equation for E ( O )  

(6.17) 

It is an inhomogeneous KdV equation similar to that of Mei for a strut, in which case 
the right-hand side must be replaced by 

1s - nlg’ -ago)go) 2 Z - 1p) 6 ZZZ=-”sZ* 

2 Y4 

KW Y,, 
2Y4 

(6.18) 

where 2BY is the local beam of the strut. 

dynamic pressure near the ship are found to the leading order. 
Once [(O) is calculated, @(O) = f ( O )  = f ( O )  is known. Thus, the potential and the 

7. Forces and the implied ship displacements 
The Bernoulli equation, 

can be expressed in the normalized near-field variables as 

Substituting the expansion (5.7), we find 

p = -p2$p+ok3), 
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which is uniform in the cross-sectional plane a t  any x, to the order of accuracy 
indicated. The total force on the ship is then 

L L as* -[I p*ndS* = e, p*-dz*+2ez[ p*Y*(x*,t*)dx*, (7.4) I - L  ax* -L 

where Y* is the half beam of the ship a t  the waterplane. Normalized by the 
displacement pg V the dimensionless wave resistance is given by 

(7.6) 
V c, = - 

2 LS,* * 
where 

is called the prismatic coefficient. The dimensionless vertical lift force is 

where A, is the waterplane area and 

(7.8) A, c, = - 
4BL 

is called the waterplane area coefficient. The dimensionless trimming moment M, 
defined to be positive if i t  tends to lift the bow, is 

The sinkage s* and trim eT are defined by the hydrostatic relations (Tuck 1966) 

-F,* = 2pg rL (s*+x*eT) Y*dx*, (7.10) 

and M* = 2p9 sL x*(s*+x*8T) Y*dx*. (7.11) 

Lets = s*/L be the dimensionless sinkage. Equations (7.10) and (7.11) may then be 

-L 

written in normalized forms : 

I -4 = s+ie,, 

M = is+r,e,, 
(7.12) 

where 1 and rg are respectively the longitudinal centre of flotation and radius of 

(7.13) 
gyration : 

2 L  

AWLS - L  
x*Y*dx* r =-j x*zY*dx*. 

Finally the dimensionless sinkage and trim are 

rgF,+lM 
rB - l2 

s = -  

MZ+M 
rg - l2 

eT = -. 
(7.14) 

These can be calculated from (7.7) and (7.9). Note that they do not represent the 
actual sinkage and trim of an unconstrained ship. 
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- Rw 
Pa 

1 2 3 4 5 

FIQURE 3. Evolution of wave resistance on a slender ship, /3 = 5. 
I 

0 1 2 3 4 5 
I 

FIGURE 4. Evolution of wave resistance on a slender ship, /3 = 10. 

8. Numerical results for a parabolic ship 
To see the dependence of the forces on the parameters a and /3 defined respectively 

in (2.9) and (2.20), we shall consider a simple ship whose cross-sectional area varies 
parabolically along the axis 

As in Mei (1986), (6.17) is solved by the explicit finite difference scheme of Johnson 
(1972). To satisfy his criteria for stability the steps in 2 and t are chosen to be 0.1 
and 0.0005, respectively. The wave resistance, vertical lift and trimming moments 

S(2)  = 1 - 2 2  (121 < 1).  
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FIGURE 5. Evolution of vertical lift on a slender ship, /I = 5.  
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t 

FIGURE 6. Evolution of vertical lift on a slender ship, /3 = 10. 

are then computed to leading order from (7.5) to  (7.9) and are plotted as functions 
of time for two ships (p = 5 and 10) and five speeds: a = 5.0,2.5 (subcritical), OL = 0 
(critical) and a = -2.5, -5.0 (supercritical). I n  Mei (1986) the wave profiles have 
been reported for the same set of speeds for /? = 10.4 and the soliton amplitudes have 
been given for = 5 and 10.4. It was shown there that for a fixed /3 there was only 
one small soliton for the low subcritical speed a = 5.0. The number and size of 
upstream solitons increase with the ship speed (hence with -a), up to  a supercritical 
threshold beyond which there are neither solitons upstream nor shipbound waves 
downstream. 

As shown in figures 3 and 4, the wave resistance for either ship rises initially to a 
maximum, corresponding to the emission of only one soliton, and diminishes in time 
to a small steady value due to the running away of the soliton and the rather small 
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waves in the wake, for a low subcritical speed a = 5 .  For a higher subcritical speed 
a = 2.5, the resistance rises higher and approaches a near-steady state, due obviously 
to  the dominance of the downstream waves. At the critical speed, the resistance 
oscillates around a still higher mean, due to the increasingly large solitons and the 
downstream waves. The oscillation is in phase with the emission of a new soliton from 
the ship. At the supercritical speed a = -2.5, there is no upstream soliton for the 
slenderer ship for which the cutoff occurs a t  about a = -2.0, but there are higher 
solitons for the less slender ship. Therefore, the resistance curve attenuates in time 
for the former but oscillates even more strongly for the latter, for which the cutoff 
occurs at about a = -3.0. At the high supercritical speed a = -5.0, the wave 
resistance attenuates to  zero for both ships. 

The vertical lift is shown in figures 5 and 6 for the two ships /3 = 5 and 10. It is 
generally positive (downward) for subcritical speed and negative (upward) for 
supercritical speed. At and near the critical speed the lift oscillates in time, and is 
out of phase with respect to  the wave resistance. Sufficiently far away from a = 0, 
the lift approaches a steady state corresponding to  the disappearance or absence of 
solitons. 

The trimming moment is shown in figures 7 and 8 for /3 = 5 and 10, respectively. 
The features are similar to the wave resistance and are mostly positive, which means 
bow-up. Near the critical speed the oscillations in time are roughly in phase with the 
wave resistance. 

9. Comparison with experiments 
Thus far only Ertekin (1984) has reported ship resistance as a function of time. 

However, he did not measure the sinkage or trim. We choose instead to  compare with 
the earlier experiments of Graff et al. (1964) who performed tests for a destroyer model 
of length 2L = 3 m in a tank of width 2 W = 10.1 m. Other gross features of the ship 
are : 

2L = 3 m, S,* = 0.0215 m2, S,  = O.O0142/y, 

C, = 0.64, C, = V / L 3  = 0.0017, C, = 0.78, 

1/2L = 0.00406 aft and rJ2L = 0.1224. 

The ship has a blunt (transom) stern; its cross-sections are known a t  14 stations and 
are used in our calculations except a t  the stern, where we take the cross-sectional 
area to be zero. Graff e ta l .  studied a wide range of depth-to-length ratios 
(y = 0.10,0.25,0.334 and greater). Since they regarded the results for the y = 0.10 
as unreliable, only the second and third cases are considered here. 

We have compared our computed transient wave resistance with the measured but 
time-averaged residual resistance of Graff et al. The latter is the difference between 
the total resistance and the frictional resistance estimated semi-theoretically. They 
all showed peaks a t  about the same ship speed. Because it is well known that accurate 
separation of frictional and form resistance from the wave resistance is notoriously 
difficult, comparison with our theory is only of qualitative value and is not presented 
here. 

I n  figures 9 and 10 we compare the normalized sinkage s and trim eT. Note that 
our theory is for a ship fixed on a carriage and (7.10) and (7 .11) .  While, in the 
experiments the ship model is only constrained not to move laterally and longi- 
tudinally; i t  is otherwise free to heave and pitch. Since it is a complicated task to 
construct a complete theory accounting for the ship motion, we follow Tuck (1966) 
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and compare the fixed ship theory with the free ship measurements. Note that the 
calculated fast maximum and minimum and the measured and time-averaged sinkage 
and trim depend on the Froude number in very similar ways. They both reach a 
maximum a t  a slightly supercritical speed. It seems highly likely that when the 
dynamic response of a free ship is accounted for, calculations based on this relatively 
simple nonlinear analysis can yield reliable results for forces on a ship in a wide 
channel. 
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